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ABSTRACT

Retinal microsurgery requires high precision. Due to the lim-
ited depth of field (DOF) of the ophthalmic microscope and
eyeball’s spherical construction, doctors observe the retina
with partially in focus and partly out of focus. To solve this
problem, we propose a deep-learning-based multi-focus fu-
sion model to reconstruct an all-in-focus image. A focus mea-
sure block (FMB) is proposed to obtain the focus area in an
image, and a fusion network (FN) is adopted to fuse the se-
lected focus areas to produce the all-in-focus image. Con-
sidering the characteristics of retinal images, we propose to
adopt two new losses to constrain our network. Based on our
in-house dataset, extensive experiments prove the effective-
ness of our algorithm.

Index Terms— Retinal microsurgery, depth of field, fu-
sion, deep-learning, focus measure

1. INTRODUCTION

The retina is a layer of tissue in the back of the eyeball with
only about 300-micrometer thickness. Retinal microsurgery
is widely adopted for retinal diseases, such as macular holes,
retinal detachment, branch\central retinal vein occlusion, and
so on. Such operation requires extremely high precision. For
example, in the treatment for central retinal vein occlusion
named endovascular microsurgery, surgeons perform cannu-
lation of retinal vessels with an injection of tissue plasmino-
gen activator [1] as shown in Fig.1. Clear images captured by
ophthalmic microscopes are fundamental for high-precision
surgery. However, due to the limited DOF of the high magni-
fication microscope camera and the eye’s spherical construc-
tion, images are captured partially out of focus. It is difficult
to locate the exact vessel position to inject and supervise the
blood flow with a clear vision, but the defocused areas make
it even harder. In this paper, we propose to adopt multi-focus
image fusion [2] to solve this problem. It aims to combine the
focus parts from multiple regional out-of-focus image stacks
into one all-in-focus image. With surgical videos where the
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multi-focus image stack can be obtained, a sharp and clear
image can be reconstructed to assist ophthalmic surgeons.

Fig. 1. Ophthalmic surgical microscope images in vitrectomy
surgery and retinal endovascular surgery.

Multiple approaches have emerged to solve the multi-
focus image fusion problem [2, 3]. Transform domain-based
solutions as [4, 5] first convert the source images into the
transform domain, in which operations based on predefined
fusion rules can be applied. The results are then inversely con-
verted back to the original domain. The conversion between
the two domains makes this kind of solution time-consuming.
Pixel-based methods [6, 7, 8], as the most representative
methods of spatial domain-based multi-focus image fusion
solutions, utilize spatial features of the source image to gen-
erate a weight map and calculate each pixel value of the fused
image as the weighted average of all source images. But
the above traditional approaches fail to address the problem
of the boundary region between the in-focus region and the
out-of-focus region, restricting their performance.

Deep learning-based solutions [9, 10, 11] also emerged,
which are mainly designed for public datasets capturing natu-
ral scenes, with limited works aiming at medical image fusion
[12, 13]. U-Net is a frequently applied deep-learning-based
neural network model for its high performance on biomedi-
cal image segmentation. Nevertheless, U-Net-based models
still suffer from their limited contextual information extrac-
tion ability and generate more blurred details than traditional
methods as discussed in [12]. Therefore, we propose a novel
fusion model for ophthalmic surgical microscope multi-focus
image fusion.

The major contributions of our proposed algorithm are
listed as follows:
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Fig. 2. The general framework of the proposed model. The Focus Measure Block and Fusion Network are depicted in detail.

1) We develop a novel deep-learning-based multi-focus
image fusion model for ophthalmic microscope images to ob-
tain all-in-focus images, which provides ophthalmic surgeons
with a clearer and sharper view when performing retinal mi-
crosurgery in order to lower the operation risk.

2) We propose a Focus Measure Block for extracting the
focus measure of the input images to provide the deep neural
network with more information. Then we innovatively reg-
ularize the performance of the fusion network by two new
losses.

3) A dataset is collected with an ophthalmic surgical mi-
croscope. With these images, various ablation studies are con-
ducted to prove the significance of our proposed block and
loss function. Meanwhile, comprehensive comparison exper-
iments are done, and the results have illustrated the effective-
ness of our proposed model.

2. METHOD

To address the deficiencies of current models in contextual
information extraction and boundary region fusion, we pro-
pose a novel multi-focus image fusion algorithm. The gen-
eral framework of the proposed method is shown in Fig.2. A
stack of images with different defocused areas is input into the
proposed Focus Measure Block (shown in Fig.2 light purple
block) to measure their degree of focus based on the gradient
of each image channel. Then images and their focus measures
are concatenated and sent into our Fusion Network (shown in
Fig.2 light blue block), where all in-focus pixels are extracted
and fused into one all-in-focus image. In order to upgrade the
network’s learning ability, we innovatively propose to make
use of the boundary and hues information to regularize its
parameters. Detailed explanations about each part of the so-
lution are presented in this section, including three parts: the
Focus Measure Block (FMB), the Fusion Network (FN), and
the loss function.

2.1. Focus Measure Block (FMB)

As can be seen from Fig.2, the focus measure is calculated
by every channel of the input image. Inspired by [14], Fo-
cus Measure Block (FMB) adopts the three steps of sum-
modified-laplacian in extracting focus measure, which is one
of the frequently used spatial domain focus measure opera-
tors [15]. The discrete approximation to the modified Lapla-
cian V2, I(z,y) of each pixel at location (x,y) in the one
channel matrix I is calculated by Eqs.(1).

Vil (@,y) =21(z,y) — I(z — step,y) — I(x + step,y)|+
121(z,y) — I(z,y — step) — I(z,y + step)|

Q)]

In order to accommodate for possible variations in the size

of texture elements, a variable spacing is applied, denoted by

step between the pixels to computing the partial derivatives.

Therefore, the focus measure at point (z,y) takes the form

of Egs.(2) as the sum of modified Laplacian greater than a
threshold value from a window area around the point:

i=x+N j=y+N

FMB= Y Y Vu.I(i,j),for Vil(z,y) =T (2)

i=z—N j=y—N

where, T is the discrimination threshold value and N is the
pixel window size. T and NN are used in the steps of threshold
masking and window-size summation illustrated in Fig.2.

2.2. Fusion Network (FN) Architecture

Concatenating each RGB image with its channel-by-channel
focus measure, FN takes in a six-dimensional input. As
shown at the bottom right of Fig.2, four kinds of network
modules are included in FN based on CNN. The first module
is used to do sampling on the input matrices multiple times
and store the information in feature maps with more channels
but the same resolution. Then, all the feature maps from
different inputs are combined during which the second kind
of module selects the maximum values. The motivation to
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directly select the maximums of the feature maps is inspired
by traditional pixel-based fusion methods. After selection
and fusion, the feature maps are sent into nine blocks of the
third kind for optimization and refinement. At last, a layer of
CNN is implemented to generate the final RGB all-in-focus
image result based on previously extracted features.

2.3. Loss Function

Generally, to optimize the multi-focus fusion network, the
loss function adopts L; loss (Lg;¢) and perceptual loss
(Lperceptual) instead of the common MSE loss so as to avoid
the boundary smoothing effect of Lo-norm [10], as shown in
Eqgs.3 and Eqgs.4:
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where I, Ireq1 and f, represent the ground-truth image, the

predicted image and the feature map produced by pretrained
CNN model acting as the feature extractor in calculating per-
ceptual loss. H, and W denote the height and width of the
ground truth image. C),, H,, and W}, denote the channel num-
ber, height and width of feature map f,,.

But for retinal images, the vascular details are vital for
surgery. A clear display of vascular details on the fundus has a
significant impact on the visual effect of the generated all-in-
focus image. Inspired by [9] and [16], to improve our model’s
capability to maintain texture details such as the blood vessels
and recover a sharp edge between in-focus pixels and out-of-
focus pixels, we introduce an edge loss into the loss function.
The edge information of the real image setting is extracted
from ground-truth images by Canny edge detectors for its su-
perior performance [17]. The edge loss is defined as Eqs.5:

1
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Ledge =
where I and E),,..q represent the edge map of ground-truth
image and predicted image, H.44. and W44, represent the
height and width of the edge map.

Meanwhile, inspired by [18], the identity loss encourages
the network to learn identical color mapping by forcing the
model to generate the same image of the target domain. Thus,
it is adopted to solve the problem that the output images have
a slightly different color tone compared to the ground-truth
images and the original image stacks. The identity loss is
defined as:

1
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Lidentity =

where I,,..42 indicates the predicted image used to compute Ligentity-

Finally, the overall loss function of our network is defined as
follows:

L= Laif + Lpe'r'ceptual + Ledge + Lidentity (7)

3. EXPERIMENTS AND RESULTS

3.1. Dataset

To solve the in-focus and defocus problem, we collected a
dataset containing 3718 microscope fundus images with a
fake eye model. The microscope is an EDER Surgical Micro-
scope SM2000J with a resolution of 1920x1080. Six image
stacks are collected under commonly used magnifications of
10, 16, and 20 respectively in different numbers of images
according to different DOF. The DOF under different magni-
fication is measured using a DOF 5-15 Depth of Field Target
from Edmund Optics. The DOF for magnification 10, 16, 20
are 1.5mm, 0.87mm, and 0.56mm, respectively.

Five image stacks of each magnification class are for
training and another stack for testing. The images are rescaled
to 256x256. Due to the specialty of microscopic images, there
are neither instruments to capture real all-in-focus ground-
truth images nor methods to make a synthetic dataset. In-
spired by [12], a well-performed traditional fusion algorithm
[7] is adopted to generate ground-truth all-in-focus images.

3.2. Implementation Details

In the FMB, the focus measure of each channel is calculated
with a 3x3 sliding window size and a threshold value of 7. We
implemented the algorithm by PyTorch with Adam optimiza-
tion algorithm and a learning rate of 0.0001. The model is
trained with 1000 epochs. The Canny edge detector is applied
with zero low threshold and high threshold. The Structural
Similarity (SSIM) and Peak Signal-to-Noise Ratio (PSNR)
are adopted as our evaluation metrics.

3.3. Ablation Study

In this paper, we proposed the focus measure block (FMB)
and loss function based on the fusion network (FN). Thus,
FN is considered the baseline. To prove the effectivity of
our FMB, which calculates focus measure for each channel
(named as FMB3), we also gave out the experiment results of
focus measure block for the gray channel of images, short as
FMB1. As shown in Table 1, the contrast of FMB1 and FMB3
experiments shows that utilizing all three channel to calculate
focus measure map has significant improvements on perfor-
mance. Adding edge loss and identity loss also improves the
model’s performance. Our proposed algorithm, combining
FN, FMB3 and two losses, gives the best SSIM and PSNR.

3.4. Comparison Experiments

We compared our method with Wang [8], ASR [4], CBF [6],
IFCNN [10], U2Fusion [11] and AiFNet [16] on the dataset.
The evaluation metrics are shown in Table.2 indicating that
our proposed method outperforms other networks.
Qualitative results are shown in Fig.3. There are two sets
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(a) Image stack with different defocused area.

i 3 3 3 i 5 3 3

(e) IFCNN (f) U2Fusion (g) AiFNet

(b) Wang (c) ASR (d) CBF

(h) Ours (i) GT

Fig. 3. Qualitative comparison of our method with 7 methods and ground truths (GT) on the fake fungus image dataset.

Table 1. Ablation Study

Models SSIM PSNR
FN 0.8942  30.64
FN+FMB1 0.8860 29.86
FN+FMB3 0.9071  30.80
FN+FMB3+Edge loss 0.9079 31.30
FN+FMB3+Identity loss | 0.9193  30.82
Ours 0.9230 32.10

of image stack in Fig.3(a), capturing retinal blood vessels,
optic nerves and the edge of fundus. Images generated by
ASR[4], CBF[6], IFCNNJ[10] and U2Fusion[11] suffer from
blurring effect to some extent while Wang [8] has a prob-
lem of pixel mismatching. Therefore, both the qualitative and
quantitative results prove the effectiveness of our proposed
method.

Table 2. Comparison experiments metrics results.

Models | Wang ~ ASR CBF IFCNN  U2Fusion AiFNet Ours
PSNR | 25.04 2926 2643  29.35 25.64 31.91 32.10
SSIM | 0.6782 0.8054 0.7180 0.8583  0.7620 0.9054  0.9230

3.5. Fusion Application

It is difficult to get a panoramic view of the fundus through
microscope imaging due to the curvature of the eyeball. With
partially blurred images, image stitching algorithms also have
limited power to generate satisfactory results. However, the
stitching outputs such as Fig.4 are more satisfying when we
can get panoramas with image stitching code' and the all-in-

Thttps://github.com/yrlu/image_mosaic_stitching

Fig. 4. Panorama image results stitched from generated all-
in-focus images.

focus images generated by our model.

4. CONCLUSIONS

In this paper, we proposed a multi-focus image fusion model
to generate all-in-focus images for ophthalmic microsurgery,
which provides the surgeons with a clear view of target tis-
sues. A focus measure block was proposed to obtain the fo-
cus areas, and then a fusion network fused them to produce
all-in-focus images. Evaluated on our collected database, the
ablation and comparison experiments proved the effectiveness
of the proposed modules and loss function. In the future, we
would like to extend our algorithm to achieve advanced per-
formance on real optic microsurgery images and videos.
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